



# HindPhotostat



## Hind Photostat & Book Store

Best Quality Classroom Topper Hand Written Notes to Crack GATE, IES, PSU's & Other Government Competitive/ Entrance Exams

**MADE EASY**  
**Computer Science Engineering / IT**  
**Toppers Handwritten Notes**  
**Database Management System**  
**By-Ravi sir**

- Theory
- Explanation
- Derivation
- Example
- Shortcuts
- Previous Years Question With Solution

**Visit us:-[www.hindphotostat.com](http://www.hindphotostat.com)**

**Courier Facility All Over India**  
**(DTDC & INDIA POST)**  
**Mob-9311989030**



# HindPhotostat



ALL NOTES BOOKS AVAILABLE ALL STUDY MATERIAL AVAILABLE COURIERS SERVICE AVAILABLE

**MADE EASY, IES MASTER, ACE ACADEMY, KRETRYX**

**ESE , GATE,PSU BEST QUALITY TOPPER HAND WRITTEN NOTES** **MINIMUM PRICE AVAILABLE @ OUR WEBSITE**

- |                                |                           |
|--------------------------------|---------------------------|
| 1. ELECTRONICS ENGINEERING     | 2. ELECTRICAL ENGINEERING |
| 3. MECHANICAL ENGINEERING      | 4. CIVIL ENGINEERING      |
| 5. INSTRUMENTATION ENGINEERING | 6. COMPUTER SCIENCE       |

**IES ,GATE , PSU TEST SERIES AVAILABLE @ OUR WEBSITE**

❖ IES –PRELIMS & MAINS

❖ GATE

➤ **NOTE:- ALL ENGINEERING BRANCHES**

➤ **ALL PSUs PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE**

**PUBLICATIONS BOOKS -**

**MADE EASY , IES MASTER ,ACE ACADEMY ,KRETRYX ,GATE ACADEMY, ARIHANT ,GK**

**RAKESH YADAV, KD CAMPUS ,FOUNDATION , MC –GRAW HILL (TMH) ,PEARSON...OTHERS**

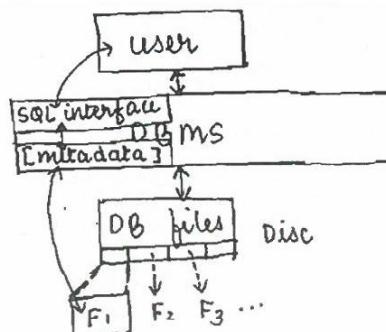
**HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE**

|                                                                                                               |                                                                                       |                                                                          |                                                                            |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|
| HIND PHOTOSTAT AND BOOK CENTER<br>F230, Lado Sarai<br>New Delhi-110030<br>Phone: 9311 989 030<br>9560 163 471 | Shop No: 46<br>100 Futa M.G. Rd<br>Near Made Easy<br>Ghitorni, New Delhi-30<br>Phone: | F518<br>Near Kali Maa Mandir<br>Lado Sarai<br>New Delhi-110030<br>Phone: | Shop No.7/8<br>Saidulajab Market<br>Neb Sarai More,<br>Saket, New Delhi-30 |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|

**Website: [www.hindPhotostat.com](http://www.hindPhotostat.com)**

**Contact Us: 9311 989 030**

# Database Management System :

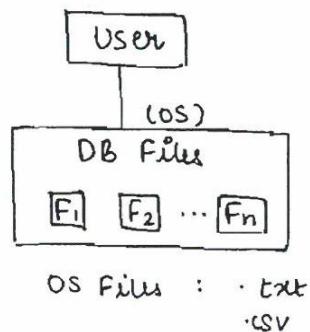

1. Integrity constraints and ER Model 1-2 marks
2. Normalization 2-4 marks
3. Queries (relational algebra, SQL, relational calculus) 4 marks
4. File organization and Indexing (B / B<sup>+</sup> Tree) 2-4 marks
5. Transactions and concurrency control. 2-4 marks

## Reference Books -

- 1) DBMS - Raghuraman Krishnan
- 2) DBMS - Navathe

## → Introduction :

- Database - structured collection of related data which is stored in computer system to access data when it is required.
- University DB      students info      [collection of files]  
                            faculty info  
                            course info etc.
- Database management system - application software to define, manipulate and access data from database.




} Interface b/w user and DB files

- metadata - data about data
- also called data dictionary
- Format of file
- Format of row and column
- All storage info related to DB files

• Flat file System [OS files] - user manage database files without using DBMS.

- Small database is managed.
- Flat file system fails to manage huge DB.



### Limitations of Flat File System

- Too complex to manage app<sup>h</sup> programs. Complete info of the program should be managed by user.
  - DBA
  - DB developer
  - end user
- more I/O cost (and access cost) to access required data from db files
- less degree of concurrency
- Too complex to maintain non-redundant data
- Too complex to maintain different levels of access control.

### Adv. of DBMS File System

- Easy to develop app<sup>h</sup> programs because of data independency: (change of file structure is not affected for user app<sup>h</sup>, user can use db files without knowing storage info)
- less I/O to access required data from db files from using indexing.
- more degree of concurrency.
- easy to maintain non-redundant data by using normalization.
- By using views (virtual tables) can maintain different levels of access control.

→ Integrity constraints : based on RDBMS model  
 └─→ correctness of data

• Data model - logical structure of DB files

- └─→ RDBMS (in symbols) : • is widely used
- └─→ ODBMS
- └─→ NWDBMS
- └─→ Hierarchical DBMS
- Codd's data model (By EF Codd)
- Codd proposed 12 rules to design RDBMS software.  
 (RDBMS guidelines)

• RDBMS Guidelines -

(set of rows & cols)

- i) data in db files must be in tabular format.
- ii) no two rows of the table should be same.
- iii) every RDBMS table must have atleast one candidate key.
- iv) Every attribute of RDBMS table must be single valued (atomic)

Eg :

| Sid            | Sname | cid ← multivalued attribute        |
|----------------|-------|------------------------------------|
| S <sub>1</sub> | A     | {C <sub>1</sub> , C <sub>2</sub> } |
| S <sub>2</sub> | B     | {C <sub>2</sub> , C <sub>3</sub> } |

not allowed in RDBMS

- v) Number of columns for each row and no. of rows for each col. must be same
- vi) Name of one column is called attribute (or field)
- vii) Name of one row is called record or Tuple
- viii) Set of all records of the table is called relational instance (or snapshot)

Attributed field

| Sid            | Sname | DOB  | Attribute field | Set of all records of DB Table |
|----------------|-------|------|-----------------|--------------------------------|
| S <sub>1</sub> | A     | 2000 | Tuple           |                                |
| S <sub>2</sub> | B     | 2000 |                 | cardinality : 4                |
| S <sub>3</sub> | C     | 2002 |                 | arity : 3                      |
| S <sub>4</sub> | D     | 2004 |                 |                                |

relational instance

- Relational schema - definition of table  
Eg: stud (sid, sname, DOB)
- Arity - number of attributes of the table
- cardinality - number of records of the table
- domain of attribute - set of possible values accepted by the attribute.
- data type -
  - char(10)
  - Boolean
  - varchar(20)
  - Date (excluding time) DD/MM/YYYY
  - integer(10)
  - timestamp (including time)
  - text (for long text/para)

• Candidate Key - minimal set of attributes to differentiate records of the relation uniquely.

E.g.) [sid] : CK ✓

[sid, sname] : not CK as it is not minimal

- Let [AB] be a candidate key
  - Then AB is unique for all records
  - no proper subset attributes of {A, B} can differentiate records uniquely.

" student can enroll many courses"

" course can be enrolled by many students"

| sid | cid | fee |
|-----|-----|-----|
| S1  | C1  | -   |
| S1  | C2  | -   |
| S2  | C2  | -   |
| S4  | C2  | -   |

Candidate Key  
[sid, cid]

NOTE:

NULL - unknown value  
or nonexisting value

Emp

| eid | ename | DOB  | pan10 | IFSC     | A.no | Acc |
|-----|-------|------|-------|----------|------|-----|
| e1  | A     | 2000 | X5    | SB101    |      | 101 |
| e2  | B     | NULL | NULL  | SB101    |      | 102 |
| e3  | C     | 2005 | NULL  | ICICI101 |      | 101 |
| e4  | D     | NULL | X2    | ICIC01   |      | 102 |

| <u>Primary Key</u>                                                                 | <u>Alternate Key</u>                                                                         |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| i) Any one cand key of RDBMS table whose field values are not allowed to have NULL | i) All cand keys of the table except primary key whose field values are allowed to have NULL |
| ii) Every attribute of p.k is not allowed NULLs                                    | ii) NULL allowed                                                                             |
| iii) Atmost one primary key is allowed in any RDBMS table                          | iii) Many alternative keys are allowed                                                       |

SYNTAX for create table :

```

CREATE TABLE Emp
(
    eid    Varchar(10) Primary Key,           → unique and not NULL
    ename  Varchar(20) NOT NULL,              → duplicate values allowed
    DOB    date,                            but can be left NULL
    panID  Varchar(8) UNIQUE,                → NULL allowed but fields
    adharID integer(12) UNIQUE,             must be unique
    IFSC   Varchar(6),                      NOT NULL,
    Acc   integer(10),
    UNIQUE (IFSC, Acc)
);

```

\* Check: Range of data is fixed  
 - used in create table  
 - age int(2) check between

candidate keys { eid, panID, adharID, IFSC, Acc }

- Simple candidate key - candidate key with only one attribute field { eid }
  - Composite candidate key - cand. key with atleast two attributes { IFSC, Accy }

- Prime attribute - attribute which belongs to some candidate key of the relation.
- Emp ( eid, ename, DOB, panID, adharID, IFSC, Acc )
- cand key { eid, panID, adharID, IFSC, Acc }
- Thus { eid, ename, panID, adharID, IFSC, Acc } are prime attributes
- prime attribute set - { eid, panID, adhar, IFSC, Acc } of emp
- Non-prime attributes - attributes which does not belong to any key of the relation.
- Non-prime attribute set - { ename, DOB } of emp

\* At least one candidate key whose field values must be NOT NULL (in RDBMS)

Create table R  
( A integer(3)  
B integer(3)  
C integer(3)  
);

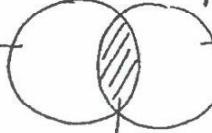
NOT NULL  
UNIQUE  
UNIQUE,

Create table R  
( A integer(3) primary key,  
B integer(3) UNIQUE,  
C integer(3)  
);

\* UNIQUE NOT NULL ≠ Primary key  
default index  
default ordering

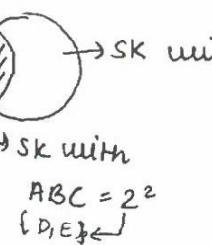
\* Superkey - attribute set which can differentiate the records of relation uniquely (but may not be minimal attribute set)

stud ( sid, sname, DOB )  
S1 A 2000  
S2 A 2000  
S3 B 2005  
S4 B 2005


candidate key { sid } : minimal superkey  
superkeys { sid, sid sname, sid DOB, sid sname DOB }

Qiii)  $R(A B C D)$  How many superkeys in  $R$  with cand key  $\{A\}$ ?

ans)  $A \cdot \{\text{any subset of } BCD\} \Rightarrow A \cdot |\{\text{Sub of } BCD\}|$   
 $\Rightarrow A \cdot 2^3$


Thus, 8 superkeys are there with cand key  $\{A\}$

Qiii)  $R(A B C D E)$  How many SK's in  $R$  (i) if  $\{A, BC\}$  are the cand key?

Ans) SK of  $A \leftarrow$    $\rightarrow$  SK of  $BC$

$$\begin{aligned} \text{Total superkeys } n(x \cup y) &= n(x) + n(y) \\ &= 2^4 + 2^3 - 2^2 \\ &= 16 + 8 - 4 \\ &= 20 \text{ superkeys} \end{aligned}$$

ii) if  $\{AB, BC\}$  are the cand key?

SK with  $AB \{C, D, E\}$   SK with  $BC \{A, D, E\}$

$$\begin{aligned} \text{Total superkeys} &= \\ &= 2^3 + 2^3 - 2^2 \\ &= 8 + 8 - 4 \\ &= 12 \text{ superkeys} \end{aligned}$$

Method 2 :

$$\# \text{ of superkeys of } R = \left\{ \# \text{ of superkeys among prime attr. of } R \right\} * 2^{\# \text{ of non prime attributes}}$$

i)  $\{A, BC\}$

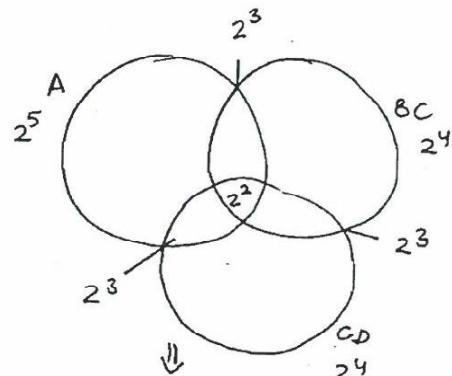
$$\# \text{ of superkeys} = \left\{ \begin{array}{l} A \\ AB \\ AC \end{array}, \begin{array}{l} ABC \\ BC \end{array} \right\} * 2^{\{D, E\}} = 5 * 2^2 = 20 \text{ superkeys}$$

here prime attributes =  $A, B, C$

& non prime attributes =  $D, E$

ii)  $\{AB, BC\}$

$$\# \text{ of superkeys} = \left\{ \begin{array}{l} ABC \\ AB \end{array}, \begin{array}{l} BC \end{array} \right\} * 2^{\{D, E\}} = 3 * 2^2 = 12 \text{ superkeys}$$


Ques) If cand keys are  $\{A, B, C\}$

(i) Then how many SK's in relation R (A, B, C, D, E, F)

$$\begin{aligned}\# \text{ of SK's} &= \{ \begin{matrix} A & B & C \\ AB & BC & \\ AC & ABC \end{matrix} \} * 2^{\{D, E, F\}} \\ &= 7 * 2^3 = 56 \text{ Superkeys}\end{aligned}$$

ii)  $\{A, BC, CD\}$  are the cand keys?

$$\begin{aligned}\# \text{ of SK's} &= \{ \begin{matrix} A & BC \\ AB & BCD \\ AC & CD \\ AD \\ ABC & ABD \\ ACD \\ ABCD \end{matrix} \} * 2^{\{E, F\}} \\ &= 11 * 4 \\ &= 44 \text{ Superkeys}\end{aligned}$$



$$\begin{aligned}&= 2^5 + 2^4 + 2^4 - \{2^3 + 2^3 + 2^3\} + 2^2 \quad \Leftarrow n(A) + n(BC) + n(CD) \\ &= 32 + 16 + 16 - 18 - 18 + 4 \\ &= 44 \text{ Superkeys} \\ &\quad - \{n(ABC) + n(BCD) + n(ACD)\} \\ &\quad + n(ABCD)\end{aligned}$$

Ques) R (A<sub>1</sub>, A<sub>2</sub> ... A<sub>n</sub>) How many superkeys in relation R if

Assume total attributes are  $\geq 6$

i)  $\{A_1, A_2 A_3, A_3 A_4\}$  cand keys

ii)  $\{A_1 A_2, A_2 A_3 A_4, A_3 A_4 A_5 A_6\}$  cand keys

iii)  $\{A_1, A_2 A_3, A_3 A_4\}$

Prime att : A<sub>1</sub> A<sub>2</sub> A<sub>3</sub> A<sub>4</sub> # of SK =  $11 * 2^{n-4}$

$$\{A_1\} * 2^3$$

$$+ \{A_2 A_3\} * 2^1$$

$$+ \{A_3 A_4\} * 2^0$$

$$= 8 + 2 + 1 = 11$$