

HindPhotostat

Hind Photostat & Book Store

Best Quality Classroom Topper Hand Written Notes to Crack GATE, IES, PSU's & Other Government Competitive/ Entrance Exams

MADE EASY
CIVIL ENGINEERING
Soil Mechanics
BY-Ram Sir

- Theory
- Explanation
- Derivation
- Example
- Shortcuts
- Previous Years Question With Solution

Visit us:-www.hindphotostat.com

Courier Facility All Over India
(DTDC & INDIA POST)
Mob-9311989030

MADE EASY

India's Best Institute for IES, GATE & PSUs

CHAPTER-1 INDEX PROPERTIES OF SOIL

SOIL MECHANICS

Soil Mechanics

Index properties of soil helps in classification and identification of soil.

1. Water content
2. Unit weight
3. Specific gravity
4. Particle size distribution
5. Consistency
6. Sensitivity
7. Thixotropy
8. Activity
9. Collapsibility

Index Properties of Soil.....Contd.

1. Water Content

Water content can be determined using any of the following methods.

- A. Oven drying method
- B. Sand bath method
- C. Alcohol method
- D. Calcium carbide method
- E. Radiation method
- F. Torsion Balance Method and infrared method
- G. Pycnometer Method

soil mechanics

Soil Mechanics

A. Oven Drying Method

- This is most accurate laboratory method.
- In this method moist sample of soil is placed in empty container of known mass (W_1) and after placing, it is weighed again (W_2).
- Container with moist soil sample is placed in temperature controlled oven for drying.

5

Index Properties of Soil.....Contd.

Soil Mechanics

- For Inorganic soil, temperature is maintained between 105°C to 110°C for 24 hours.
- For organic soil, temperature is not increased beyond 60°C in order to avoid oxidation of organic matters.
- For soil having gypsum, temperature is limited to 80°C in order to avoid, loss of water of crystallization (Structural water).

6

soil mechanics

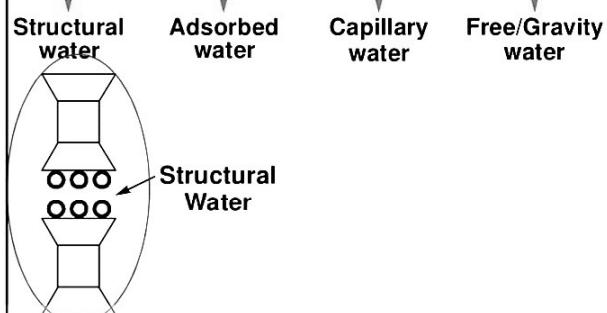
Index Properties of Soil.....Contd.

Soil Mechanics

NOTE:

In no case, temperature is increased beyond 110°C because it results in destruction of soil solids causing loss of structural water.

NOTE : In oven drying, all types of soil water (free water, capillary water, adsorbed water) are removed, except structural water or water of crystallization (if present).

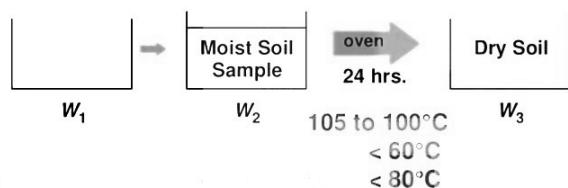

7

Index Properties of Soil.....Contd.

Soil Mechanics

Soil Water

8


Index Properties of Soil.....Contd.

Soil Mechanics

- After drying container with dry soil is again weighed (W_3) and water content is measured as follows

$$\omega = \frac{\text{Weight of water}}{\text{Weight of solids}} \times 100 = \frac{W_2 - W_3}{W_3 - W_1} \times 100$$

9

D. Calcium Carbide Method

- It is one of the quickest methods to find water content of soil which gives the result within 5 to 7 minutes.
- It is field method.

10

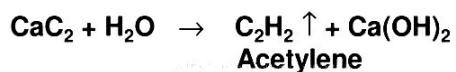
Index Properties of Soil.....Contd.

Soil Mechanics

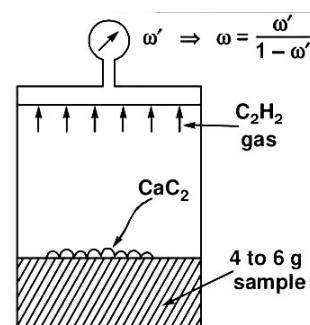
- In this method 4 to 6 g (fixed weight) of sample is taken due to calibration) of sample is placed in moisture meter and calcium carbide is added in it which reacts with the water present in the sample resulting in the formation of acetylene gas that exerts pressure over the gauge which is further calibrated to give water content of soil in terms of total mass of soil. (')

11

Index Properties of Soil.....Contd.


Index Properties of Soil.....Contd.

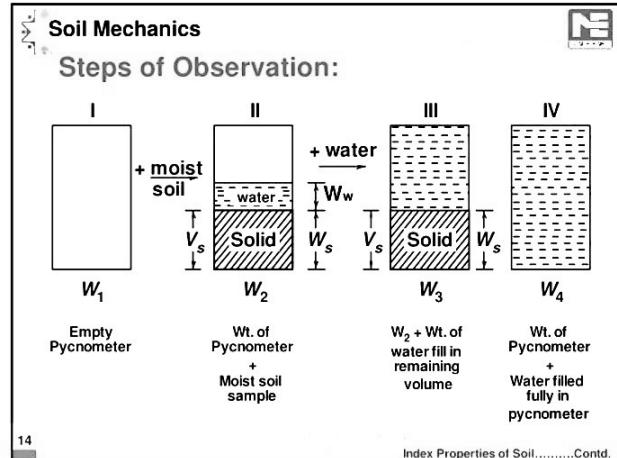
Soil Mechanics


Calibrated chart

~	~
~	~
~	~
~	~

12

Index Properties of Soil.....Contd.


Soil Mechanics

G. Pycnometer Method

- It is quick method gives results within 10 to 20 mins.
- This method is used for those soil for which (sp. Gravity) is known.
- Pycnometer is 900 ml flask having conical top with 6 mm diameter circular hole at its centre for the removal of air.
- This method is suitable for cohesionless soil (because remove of entrapped gases in difficult from cohesive soils).

13

Index Properties of Soil.....Contd.

Soil Mechanics

Weight of water in moist soil sample = $W_2 - W_1 - W_s$

It can be seen that, if from W_3 , weight of solid is removed and replaced by the weight of an equivalent volume of water, the weight W_4 is obtained.

$W_4 = W_3 - W_s + V_s w$

Weight of water having equivalent volume
 $V_s = V_s w$

15

Index Properties of Soil.....Contd.

Soil Mechanics

$$W_4 = W_3 - W_s + \frac{W_s}{G \gamma_w} \cdot \gamma_w \quad \square \gamma_s = \frac{W_s}{V_s} = G \cdot \gamma_w$$

$$W_3 - W_4 = W_s \left(1 - \frac{1}{G} \right)$$

$$W_s = W_3 - W_4 \left(\frac{G}{G - 1} \right) \rightarrow (A)$$

water content = $\frac{\text{Weight of water}}{\text{Weight of solids}} \times 100$

16

Index Properties of Soil.....Contd.

Soil Mechanics

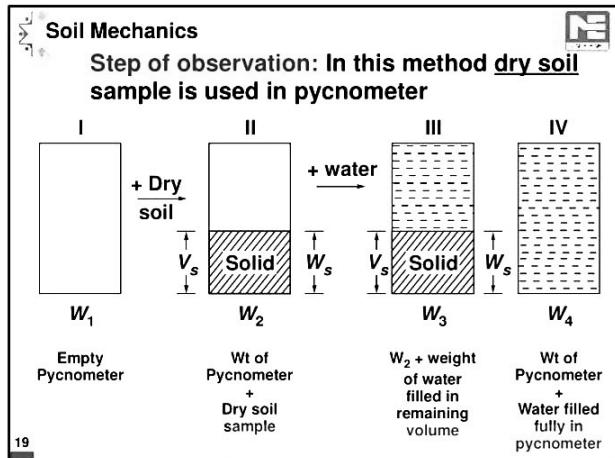
$$\omega = \frac{W_2 - W_1 - W_s}{W_s} \times 100 = \left(\frac{W_2 - W_1}{W_s} - 1 \right) \times 100$$

$$\omega = \left(\frac{W_2 - W_1}{W_3 - W_4} \left(\frac{G - 1}{G} \right) - 1 \right) \times 100$$

17

Index Properties of Soil.....Contd.

Soil Mechanics


2. Specific Gravity

- Specific gravity of soil can be computed using 50 ml density bottle, 500 ml flask or by pycnometer.
- Specific gravity of solids is given as

$$G = \frac{\text{Weight of solids of given volume}}{\text{Weight of water having same volume}}$$

18

Index Properties of Soil.....Contd.

Soil Mechanics

Weight

Weight of solids = Dry cut of soil mass = $W_2 - W_1 = W_d$

Weight of water in III = $W_3 - W_2$

Weight of water in IV = $W_4 - W_1$

Weight of water having same volume as that of soil solids (V_s) = Weight of water in IV - Weight of water in III

$$= W_4 - W_1 - (W_3 - W_2) = W_4 - W_3 + W_2 - W_1$$

20

Index Properties of Soil.....Contd.

Soil Mechanics

Weight of solids of given volume

$$G = \frac{\text{Weight of solids of given volume}}{\text{Weight of water having same volume}}$$

$$G = \frac{W_2 - W_1}{W_4 - W_3 + W_2 - W_1} = \frac{W_d}{W_4 - W_3 + W_d}$$

21

Index Properties of Soil.....Contd.

Soil Mechanics

NOTE : Kerosene is used instead of water for fine grained soil. Because it is better wetting agent than water. If kerosene is used instead of water, then SG is calculated as

$$G = \frac{W_2 - W_1}{W_4 - W_3 + W_2 - W_1} \times G_k = \frac{\gamma_s}{\gamma_{\text{kerosene}}} \times G_k$$

$$= \frac{\gamma_s}{\gamma_k} \times \frac{\gamma_k}{\gamma_w} = \frac{\gamma_s}{\gamma_w}$$

(G_k = specific gravity of kerosene)

22

Index Properties of Soil.....Contd.

Soil Mechanics

3. Unit Weight of Soil

- Core -Cutter method
- Water displacement method
- Sand replacement method
- Submerged density method

A. **Core-Cutter Method:**

- It is field method.
- Core cutter of known volume 1000 CC is pushed into the ground and then core containing soil is taken out from the ground.

23

Index Properties of Soil.....Contd.

Soil Mechanics

➤ Weight of core with soil sample (W_2) and empty core (W_1) is measured. Hence bulk unit weight is given as

$$\gamma_b = \frac{\text{Weight of soil}}{\text{Volume}} = \frac{W_2 - W_1}{V}$$

24

Index Properties of Soil.....Contd.

Soil Mechanics

- By measuring water content of given sample, dry unit weight can be calculated as

$$\gamma_d = \frac{\gamma_b}{1 + \omega}$$

- This method is generally not suitable for gravels, sand and dry soil.
- It is generally used for soft silt and clay.

25

Index Properties of Soil.....Contd.

Soil Mechanics

Hammer

Dolly

1000CC

26

Index Properties of Soil.....Contd.

Soil Mechanics

B. Water Displacement Method:

- This method is generally used for cohesive soils that are highly sticky in nature.
- In this method, sample of soil is trimmed into more or less uniform shape and weighed (W_1)
- Sample is then coated with paraffin wax and is again weighed (W_2), coating prevent entry of water into sample.

27

Index Properties of Soil.....Contd.

Soil Mechanics

Water Displacement Method

W_1

W_2

Wt. of soil

Wt. of soil + wt. of paraffin wax.

V_w

Volume of soil + paraffin wax.

28

Index Properties of Soil.....Contd.

Soil Mechanics

- The coated specimen of soil is immersed slowly in a container, that is completely filled with water and volume of water displaced by coated specimen is V_w .

Volume of paraffin wax = $\frac{W_2 - W_1}{\gamma_{PW}} = \frac{W_2 - W_1}{G_{PW}\gamma_w}$

$V_w = \text{Volume of soil} + \text{Volume of paraffin wax.}$

29

Index Properties of Soil.....Contd.

Soil Mechanics

Volume of soil = $V_w - \text{Volume of paraffin wax}$

$$= V_w - \frac{W_2 - W_1}{\gamma_{PW}}$$

Unit weight of soil = $\frac{\text{Weight of soil}}{\text{Volume of soil}} = \frac{W_1}{V_w - \left(\frac{W_2 - W_1}{\gamma_{PW}} \right)}$

30

Index Properties of Soil.....Contd.

Soil Mechanics

C. Sand Replacement Method:

- It is field method.
- A small pit is excavated and the excavated soil sample is weighted.
- A calibrated cylinder containing sand is placed over the excavated pit and is filled with sand.
- Volume of the pit is obtained from the calibrated cylinder

31

Index Properties of Soil.....Contd.

Soil Mechanics

➤ The bulk unit weight is calculated as

$$\gamma_b = \frac{\text{Weight}}{\text{Volume}}$$

➤ It is suitable for gravel, sand and dry soil.

32

Index Properties of Soil.....Contd.

Soil Mechanics

33

Index Properties of Soil.....Contd.

Soil Mechanics

4. Particle Size Distribution Analysis

Coarse grained soil	Gravel	4.75 mm	to	80 mm
	Sand	75 μm	to	4.75 mm
Fine grained soil	Silt	2 μm	to	75 μm
	Clay	< 2 μm	to	< 0.002 mm

34

Index Properties of Soil.....Contd.

Soil Mechanics

Particle Size Analysis

```

graph TD
    PSA[Particle Size Analysis] --> SA[Sieve Analysis  
(for coarse grained soil)]
    PSA --> SAFA[Sedimentation Analysis  
(for fine grained soil)]
    SA --> CGS[Coarse/Gravel sieving  
(for 4.75 mm < d < 80 mm)]
    SA --> FSS[Fine/Sand sieving  
(0.075 mm < d < 4.75 mm)]
    FSS --> Dry
    FSS --> Wet
    SAFA --> PM[  
Pipette method  
or  
Hydrometer method]
  
```

35

Index Properties of Soil.....Contd.

Soil Mechanics

Sieve Analysis

- Sieve analysis is done for the soil fraction size greater than 0.075 mm. It means particles which are retained over 75 sieve.
- As per IS460:1962 sieves are designed by the size of the square opening in mm (or) m (1 micron = 10^{-6}m = 10^{-3}mm = 1 μm)

36

Index Properties of Soil.....Contd.

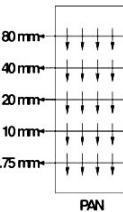
Soil Mechanics

- In this method different sieves are arranged one over each other in descending order of their size.
- An oven dried sample of soil is placed over top most sieve and sieving is done atleast for 10 min either manually or in sieve shaker.
- Weight of soil fractions retained over each sieve is noted to compute the percentage finer corresponding to given size of sieve.

$$\% \text{ finer } (\%N) = 100 - \text{cumulative \% weight retained.}$$

Index Properties of Soil.....Contd.

Soil Mechanics


(a) Coarse Sieve / Gravel Sieving:

- It is done for soil fraction having size greater than 4.75 mm. It means retained over 4.75 mm sieve.
- Standard sieves used are 80 mm, 40 mm, 20 mm, 10 mm and 4.75 mm

Index Properties of Soil.....Contd.

Soil Mechanics

For Example :

PAN

Sieve size (mm)	Wt. Retained	%Wt. Retained	Cumulative %Wt. Retained	%N
80	10g	10%	10%	90%
40	30g	30%	40%	60%
20	30g	30%	70%	30%
10	20g	20%	90%	10%
4.75	10g	10%	100%	0%
	100g			

Index Properties of Soil.....Contd.

Soil Mechanics

(b) Fine Sieving / Sand Sieving

- It is done for soil fraction that passes through 4.75 mm sieve but are retained over 0.075 mm sieve.
- Standard sieves used are 2 mm, 1 mm, 600 , 425 , 212 , 150 , 75 .
- The result of the sieve analysis represented in terms of size of the particle and corresponding % finer.
- It is generally preferred to wash the soil fraction that passes through 4.75 mm sieve before carrying out sieving in order to separate clay and silt particles present over sand this process is termed as wet sieving.

Soil Mechanics

(c) Sedimentation Analysis

- Sedimentation analysis is carried out for the soil fraction having size less than 0.075 mm or which passes through the 0.075 mm sieve.
- Particles having size less than 0.2 (0.0002 mm) can not be analyses even by sedimentation. For them special techniques like electron microscope and X-ray diffraction techniques are used.

Index Properties of Soil.....Contd.

Soil Mechanics

- Sedimentation analysis is based on stoke's law, according to which velocity of particle undergoing settlement within infinite medium is depend upon size, shape and mass of the particle.
- According to stokes law, terminal velocity is given as

$$V_s = \frac{(\gamma_s - \gamma_w)d^2}{18\mu} = \frac{(G - 1)\gamma_w d^2}{18\mu}$$

Where, γ_s = Dynamic viscosity of water; d = Particle size

Index Properties of Soil.....Contd.

 Soil Mechanics

At, 20°C, dynamic viscosity of water is 0.01 poise and suppose, G = 2.65 then

$$v_s = 899250 d^2 \text{ m/s}$$

$$v_s = 0.899 d^2 \text{ m/s}$$

At 29°C, dynamic viscosity of water is 0.00855 poise, then

$$v_s = 1.07 d^2 \text{ m/s}$$

43

Index Properties of Soil.....Contd.

 Soil Mechanics

(d) Limitation of Stoke's law

1. Particles undergoing settlement is assumed to be spherical but in actual, fine grained particles are flaky in nature.
2. The medium in which settlement takes place is assumed to be infinite but in actual, sedimentation jar has finite dimension.
3. The particles is assumed to be undergoing discrete settling. But in actual fine grained particles aggregates during the settlement

44

Index Properties of Soil.....Contd.

 Soil Mechanics

4. Stoke's law is valid for the particles having size range between 0.2 mm to 0.2 m.

- If the size of particle is greater than 0.2 mm gravity acceleration sets up during settlement due to turbulent motion as a result of which constant velocity is not achieved throughout the settlement.
- If the size of particle is less than 0.2 m, then Brownian motion setup which does not allow settlement of particle.

45

Index Properties of Soil.....Contd.

 Soil Mechanics

General Procedure for Sedimentation Analysis:

- Sedimentation analysis can be carried out either by pipette method or by hydrometer method.

Method of preparation of soil suspension is same in both method as follows:

Pretreatment

- Before preparing soil suspension, organic matter and calcium compounds present in soil should be removed in order to avoid the aggregation of solids during settlement.

46

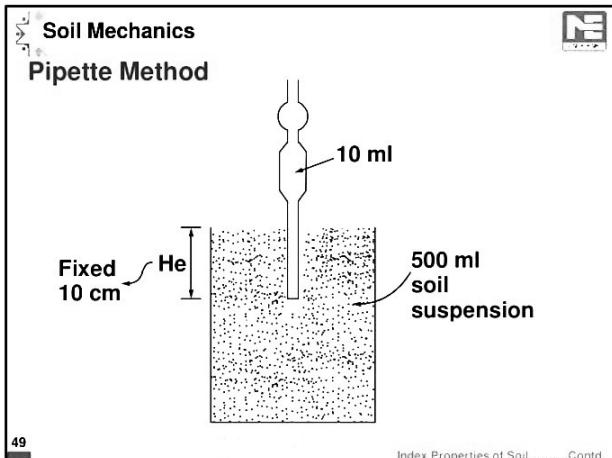
Index Properties of Soil.....Contd.

 Soil Mechanics

- Organic matters are removed by oxidizing agents like hydrogen peroxide (H_2O_2) which carries out oxidation of organic matters and calcium compounds are removed by 0.2 N, HCl.
- Soil passing through 75 m sieve is mixed in water to prepare standard volume of soil suspension.
- In pipette method, 12 to 30 gram of soil is added in water for preparation of 500 ml soil suspension total volume and In hydrometer method, 24 to 60 g of soil is added in water for preparation of 1000 ml of soil suspension.

47

Index Properties of Soil.....Contd.


 Soil Mechanics

Post treatment

- After preparing suspension, dispersing agents or deflocculating agent is added in it to prevent the flocculation of solids during the settlement.
- Commonly used deflocculating agents are sodium hexa metaphosphate, sodium carbonate, sodium oxilate, sodium phosphate.

48

Index Properties of Soil.....Contd.

Soil Mechanics

- In this method 10 ml of sample is collected from soil suspension at fixed sampling depth at 10 cm at different time intervals.
- The collected sample is further being tested for mass of solids (m_d) present in it by oven drying method.
- The size of particles that settles in the soil suspension by distance of sampling depth ($He = 10 \text{ cm}$) is computed using Stoke's law.

50

Index Properties of Soil.....Contd.

Soil Mechanics

$$V_s = \frac{(G - 1) \gamma_w d^2}{18 \mu} = \frac{He}{t}$$

$$d^2 = \frac{18 \mu}{(G - 1) \gamma_w} \cdot \frac{He}{t}$$

$$d = \sqrt{\frac{18 \mu}{(G - 1) \gamma_w}} \cdot \sqrt{\frac{He}{t}} = k \sqrt{\frac{He}{t}}$$

where, $k = \sqrt{\frac{18 \mu}{(G - 1) \gamma_w}}$

where, $t = \text{Time is second after which the pipette is immersed in soil suspension.}$

51

Index Properties of Soil.....Contd.

Soil Mechanics

% finer (%N) corresponding to computed size of particle 'd' which settles in suspension by He in given time t is analyzed as

$$\%N = \frac{\text{Mass of solids/unit volume at depth He at time 't'}}{\text{Mass of solids per unit volume initially}}$$

$$= \frac{(m_d / V_p)}{M / V_{\text{soil}}} \times 100$$

52

Index Properties of Soil.....Contd.

Soil Mechanics

Where,

m_d : mass of solids in collected sample from sampling depth He at time 't'

V_p : Volume of pipette (10 ml)

M : Mass of solids added initially of the preparation of soil suspension (12 to 30 g)

V : Total volume of suspension (500 ml)

53

Index Properties of Soil.....Contd.

Soil Mechanics

If effect of dispersing agent is also to be considered

$$\%N = \frac{\frac{m_d}{V_p} - \frac{m'}{V}}{\frac{M}{V}} \times 100$$

Where, m' : Mass of dispersing agent added for the preparation of soil suspension.

We have to draw Particle size distribution curve

54

Index Properties of Soil.....Contd.

Soil Mechanics

Hydrometer Method

➤ Hydrometer is a device which is used for the measurement of density of the suspension /specific gravity of soil suspension at depth He at time t .

$$\rho_{ss} = 1 + \frac{R_h}{1000}$$

$$G_{ss} = \frac{\rho_{ss}}{\delta_w} = \frac{\rho_{ss}}{1 \text{ g/cc}} = 1 + \frac{R_h}{1000}$$

Where, R_h : Corrected hydrometer reading

55

Index Properties of Soil.....Contd.

Soil Mechanics

- Volume of hydrometer below the centre of its bulb is approximate 50% of its total volume.
- Reading on the hydrometer increase downward.
- For calibration, reading on the hydrometer is marked as

$$R_h = (-1) \times 1000$$

56

Index Properties of Soil.....Contd.

Soil Mechanics

57

Index Properties of Soil.....Contd.

Soil Mechanics

- In hydrometer method $\%N (m_d)$ is computed indirectly by noting density of suspension at sampling depth He at different time intervals.
- In pipette method, sampling depth was constant ($He = 10 \text{ cm}$) whereas in hydrometer method sampling depth goes on increasing with increase in time and settlement of particles, due to which calibration of hydrometer and sedimentation jar is done before each test.

58

Index Properties of Soil.....Contd.

Soil Mechanics

➤ The size of particles that settle in suspension by a distance of sampling depth He in any time t is given as

$$d = k \sqrt{\frac{H_e}{t}}$$

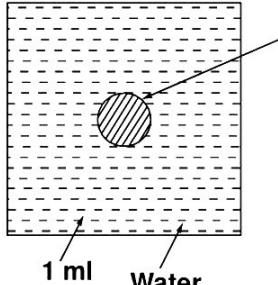
Where $k = \sqrt{\frac{18\mu}{(G-1)\gamma_w}}$

59

Index Properties of Soil.....Contd.

Soil Mechanics

➤ $\%N$ corresponding to noted size of particle d is computed indirectly by noting density of the suspension at sampling depth He at any time t as


$$\%N = \frac{R_h}{1000} \times \frac{G}{M} \times \frac{V}{V-1} \times 100$$

60

Index Properties of Soil.....Contd.

Soil Mechanics

Let m_d is mass of solids per ml of suspension at sampling depth of He at given times t .

61

Index Properties of Soil.....Contd.

Soil Mechanics

Volume of solids = $\frac{m_d}{G\rho_w}$

Volume of water = $1 \text{ ml} - \frac{m_d}{G\rho_w}$

Mass of water = $\left(1 \text{ ml} - \frac{m_d}{G\rho_w}\right)\rho_w$

Total mass of 1 ml suspension =

$$m_d + \left(1 \text{ ml} - \frac{m_d}{G\rho_w}\right)\rho_w = m_d + \left(1 - \frac{m_d}{G}\right) = 1 \text{ g/cc}$$

62

Soil Mechanics

Density of 1 ml suspension = $\frac{\text{Mass}}{\text{Volume}} = \frac{m_d + 1 - \frac{m_d}{G}}{1 \text{ ml}}$

$$= m_d + 1 - \frac{m_d}{G} \quad \dots(\text{i})$$

As per hydrometer reading,

Density, $\rho_{ss} = 1 + \frac{R_h}{1000} \quad \dots(\text{ii})$

63

Index Properties of Soil.....Contd.

Soil Mechanics

$$\frac{R_h}{1000} = \frac{(G - 1)m_d}{G}$$

$$\Rightarrow m_d = \frac{R_h}{1000} \left(\frac{G}{G - 1} \right)$$

Mass of solid per unit volume at He at time t

$$\%N = \frac{\text{Mass per unit volume initially}}{\text{Mass per unit volume initially}} \times 100$$

64

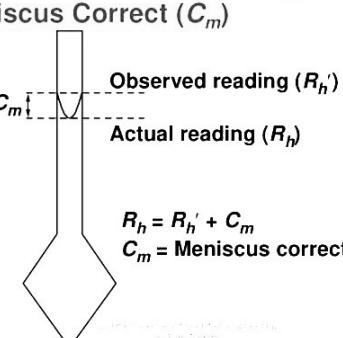
Index Properties of Soil.....Contd.

Soil Mechanics

$$= \frac{m_d / 1 \text{ ml}}{M / V} \times 100$$

$$\%N = \frac{\frac{R_h}{1000} \times \left(\frac{G}{G - 1} \right)}{\frac{M}{V}} \times 100$$

M : Mass of the solids added initially (in grams)
V : Total volume of soil suspension (1000 ml)


65

Index Properties of Soil.....Contd.

Soil Mechanics

The observed reading of hydrometer are further being corrected for the following:

1. Meniscus Correct (C_m)

$$R_h = R_h' + C_m$$

C_m = Meniscus correction

66

Index Properties of Soil.....Contd.

Soil Mechanics

- Due to presence of turbidity in soil suspension upper level of meniscus is noted instead of lower, which leads to the reduced value of the observation being noted. Hence meniscus correction applied is positive.

67

Index Properties of Soil.....Contd.

Soil Mechanics

2. Temperature Correction (C_T)

- The calibration of hydrometer is done at 27°C.
- If the temperature during the test is greater than 27°C, it results in reduced value of observation being noted. Hence correction applied is positive and vice versa.

Temp $> 27^\circ\text{C}$ $C_T = +\text{ve}$

Temp $< 27^\circ\text{C}$ $C_T = -\text{ve}$

$$R_h = R_h' \pm C_T$$

68

Index Properties of Soil.....Contd.

Soil Mechanics

3. Dispersing Agent Correction (C_D)

- Addition of dispersing agent in suspension increase its density, which results in increased value of observation being noted. Hence dispersing agent correction applied is negative.

$$R_h = R_h' - C_D$$

Composite Correction:

$$C = C_m \pm C_T - C_D$$

$$R_h = R_h' \pm C$$

69

Soil Mechanics

Particle Size Distribution Curve

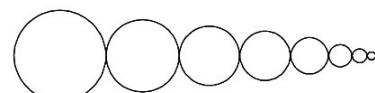
- In this curve, %N (finer) is expressed on y-axis and corresponding size of particle is expressed on x-axis is log-scale.
- This curve helps in analyzing the type and gradation of soil.
- The soil may be termed as well graded soil, Poorly/uniformly graded soil & gap graded soil.

70

Index Properties of Soil.....Contd.

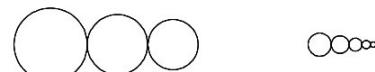
Soil Mechanics

- If the soil has good representation of all the sizes of the particle present in it, it is termed as well graded soil.
- If the soil consists of excess of one size of particles or is deficient of another size of particles (or it consists of same size of particles) it is termed as poorly graded soil [or uniformly graded soil-in later case]
- If certain size of particles is missing from soil, it is known as gap graded soil.


71

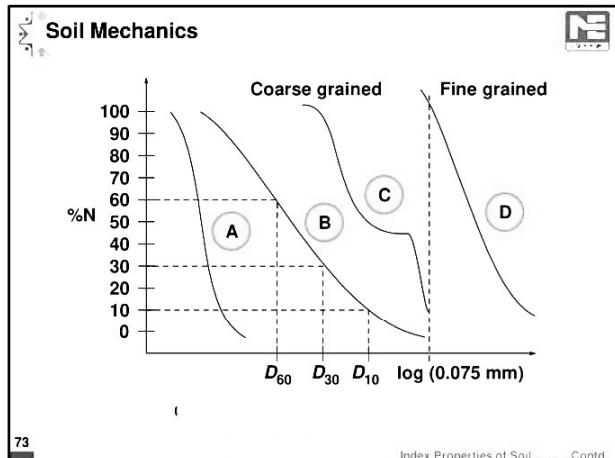
Index Properties of Soil.....Contd.

Soil Mechanics


Well graded

Poorly graded/ Uniformly graded

Gap graded



72

Index Properties of Soil.....Contd.

Index Properties of Soil.....Contd.

73

Soil Mechanics

Curve A : Uniformly/poorly graded coarse grained soil
 Curve B : Well graded coarse grained soil
 Curve C : Gap graded coarse grained soil
 Curve D : Well graded fine grained soil

From particle size distribution curve, D_{10} , D_{30} , D_{60} , can be found out.

D_{10} - Effective size, defined by Allen Hazen, size in mm such that 10% of particles are finer than this size.
 D_{30} - Size in mm such that 30% of particles are finer than this size.
 D_{60} - Size in mm such that 60% of particles are finer than this size.

74

Soil Mechanics

Coefficient of Uniformity (C_u)

- It represents particle size range of distribution curve.
- It is defined as ratio of D_{60} size of particles to the D_{10} size of particles.

$$C_u = \frac{D_{60}}{D_{10}}$$

Index Properties of Soil.....Contd.

75

Soil Mechanics

- For uniformly graded soil, $C_u \leq 1$ (or less than 2)
- For well graded sand, $C_u > 6$
- For well graded Gravel, $C_u > 4$

Index Properties of Soil.....Contd.

76

Soil Mechanics

Coefficient of Curvature (C_c)

- If represents shape of particle size distribution curve
- It is defined as

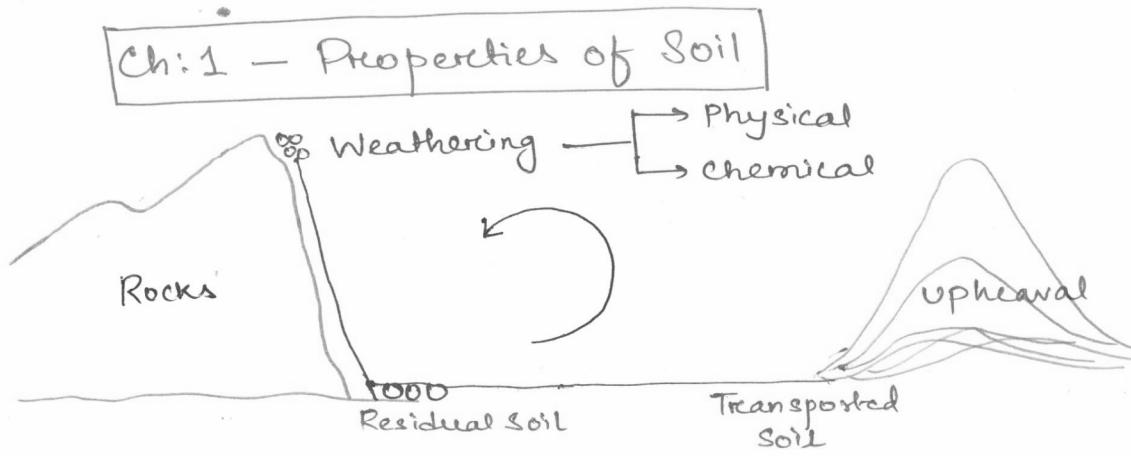
$$C_c = \frac{D_{30}^2}{D_{60}D_{10}}$$

Index Properties of Soil.....Contd.

77

Soil Mechanics

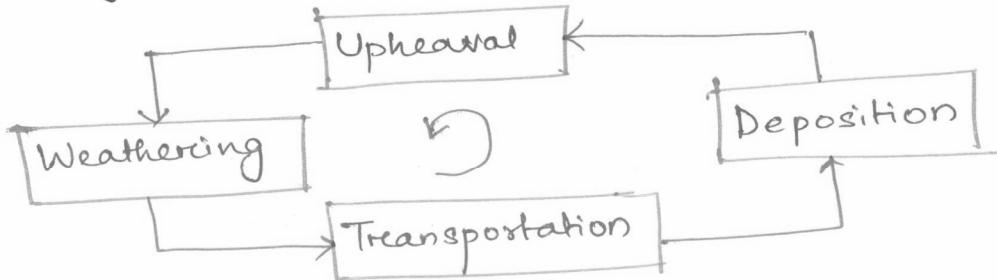
- For well graded soil, C_c should be in the range of 1 to 3
- If C_c is less than 1 or greater than 3, then soil is gap graded soil.


Index Properties of Soil.....Contd.

78

• GATE : 15-18 Marks

IES → PRE → 16-21 Questions
MAINS → 100-110 Marks


BOOK - Gopal Rangan & Rao

Soil :- Disintegrated part of rocks

Pedogenesis :- Process of formation of soil

Geological Cycle of formation of soil

Father of Soil Mechanics : "Karl Von Terzaghi"

Types of Soil

Physically Weathered Soil

Type of Soil	Agent	Region
① Alluvial Soil	Running Water	River Basin
② Lacustrine	Fresh & Still Water	Lakes & Ponds
③ Marine Soil	Sea Water	At Sea shore
④ Glacial (Till)	Ice	Glaciers
⑤ Colluvial (Talus)	Gravity	Mountain Valleys
⑥ Aeolian (Sand Dunes)	Wind	Desert
⑦ Loess	Wind Blown Silt	Desert

NOTE: In Loess, when water Content is increased, it becomes soft and collapsible.

Chemically Weathered Soil

⑧ Marl Soil :- It is formed due to chemical decomposition of aquatic plants and animal bones. It contain high amount of Calcareous Compound.

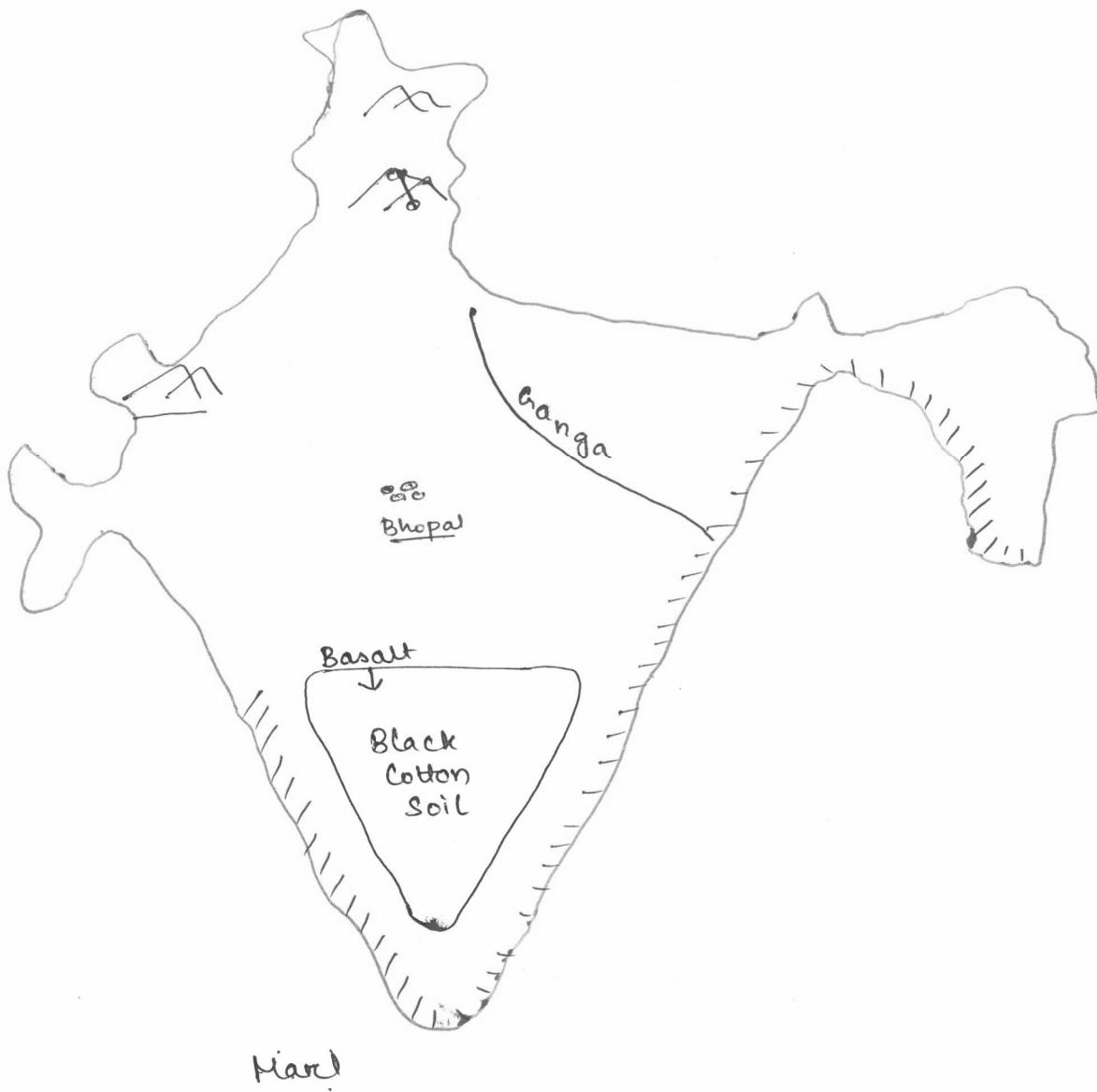
⑨ Tuff Soil :- It is volcanic ash transported by wind or water.

⑩ Bentonite Soil :- It is chemically weathered volcanic ash (residual soil). It shows high plasticity, high swelling and shrinkage due to presence of high amount of "Montmorillonite" clay mineral. It is also used as lubricant in drilling operation.

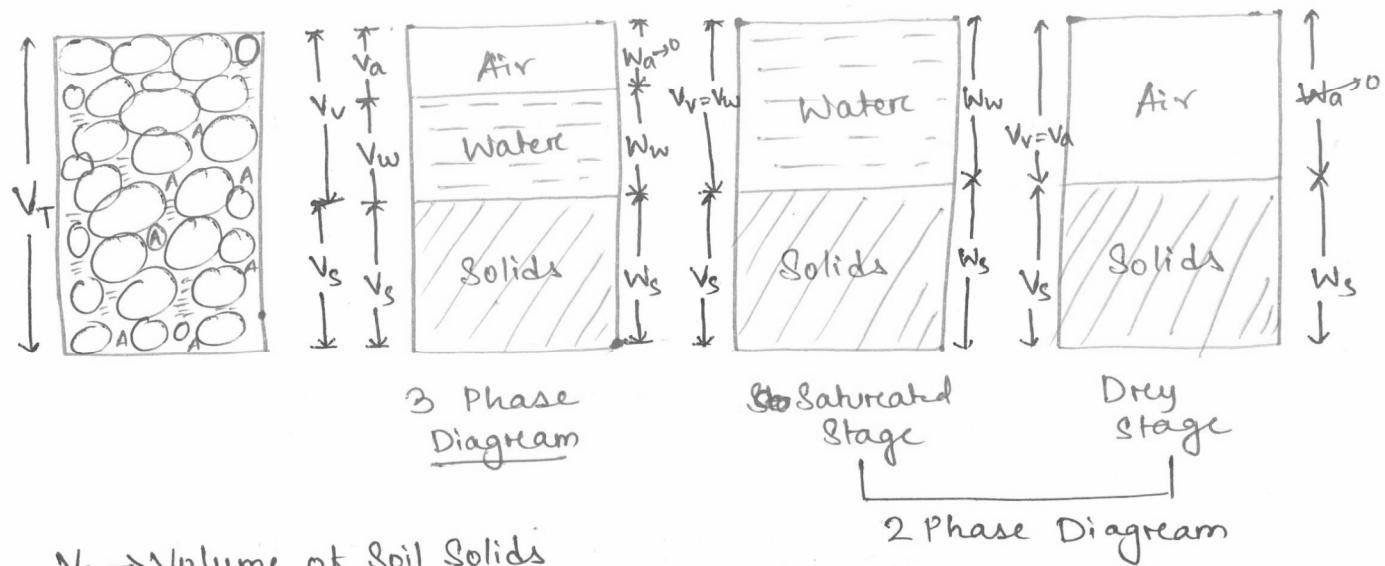
⑪ Black Cotton Soil :- • It is formed from Basalt.

- It is residual soil.
- It contains high amount of Montmorillonite due to which it shows high swelling & shrinkage, high plasticity & low shear strength.
- It occupies more than 20% area of India.

⑫ Laterite Soil :- (Red)
• It is formed due to leaching (washing out of siliceous compound and accumulation of iron & aluminium oxide)


- It is found in Western Ghats, Eastern Ghats and Great North East (Illite Mineral)

⑬ Organic Soils :-


- Muck Soil :- It is the mixture of organic & inorganic soil.
- Peat Soil :- It almost entirely consists of vegetative matter in different stages of decomposition. It possess black to dark brown colour and organic odour. It is highly compressible soil.

• Humus Soil :- It is the top layer of Earth which contains grass and grass roots.

• Loam Soil :- It is the mixture of sand, silt and clay.

Phase Diagram

$V_s \rightarrow$ Volume of Soil Solids

V_T → Total volume of soil mass

Important Definitions

① Water Content/Moisture Content (W)

$$W = \frac{\text{Wt. of Water}}{\text{Wt. of Solids}} \times 100 = \frac{W_w}{W_s} \times 100 = \frac{M_w}{M_s} \times 100$$

NOTE (1): Range of w $w \geq 0$.

NOTE(2): Relation in between W_s , W & W_{TOTAL}

$$w = \frac{w_w}{w_s}$$

$$1 + w = 1 + \frac{Ww}{W_s} \quad (\text{Adding 1 on both sides})$$

$$1 + \omega = \frac{w_s + w_w}{w_s}$$

$$1+w = \frac{W_{TOTAL}}{W_S}$$

$$W_s = \frac{W_{TOTAL}}{1+w}$$

$$M_g = \frac{M_{TOTAL}}{HW}$$

NOTE (3):- Water Content can also be represented w.r.t total wt. of soil mass, which is called apparent Water Content (w').

$$w' = \frac{\text{wt. of water}}{\text{Total wt. of soil}} * 100 \Rightarrow \frac{W_w}{W_{\text{TOTAL}}} * 100 = \frac{M_w}{M_{\text{TOTAL}}} * 100$$

Range of w'

$$0 \leq w' \leq 100\%.$$

$w' \neq 100\%$, because if $w' = 100\%$, then $W_w = W_{\text{TOTAL}}$ which is not possible in soil mass.

◆ w is more significant than w' because solids are stable quantity and while total weight changes with change in weight of water.

② Void Ratio (e)

$$e = \frac{\text{Volume of Voids}}{\text{Volume of Solids}} = \frac{V_v}{V_s}$$

Range : $e > 0$

• It is represented as decimal fraction

③ Porosity (n)

$$n = \frac{\text{Vol. of Voids}}{\text{Total Vol. of Soil}} * 100 = \frac{V_v}{V_T} * 100$$

Range : $0 < n < 100\%.$

$n \neq 100\%$, because if $n = 100\%$, then $V_v = V_T$ which is not possible in soil mass.

NOTE : Relation between e & n

$$n = \frac{V_v}{V_t} = \frac{V_v}{V_v + V_s} = \frac{\cancel{V_v}}{\cancel{V_v} \left[1 + \frac{V_s}{V_v} \right]} = \frac{1}{\frac{1}{e} + 1}$$

$$n = \frac{e}{1+e} \quad ***$$

e in terms of n

$$n = \frac{1}{\frac{1}{e} + 1} \Rightarrow \frac{1}{e} + 1 = \frac{1}{n} \Rightarrow \frac{1}{e} = \frac{1}{n} - 1 = \frac{1-n}{n}$$

$$e = \frac{n}{1-n}$$

NOTE: Though size of void is more in coarse grained soil but void ratio or porosity is more in fine grained soil due to presence of more no. of voids (clay is highly porous, less permeable)

NOTE : Relation in between V_s, V_TOTAl & e

$$e = \frac{V_v}{V_s} \quad (\text{adding 1 both sides})$$

$$1+e = 1 + \frac{V_v}{V_s}$$

$$1+e = \frac{V_s + V_v}{V_s} = \frac{V_{TOTAL}}{V_s}$$

$$V_s = \frac{V_t}{1+e} \quad ***$$

④ Degree of Saturation (S)

$$S = \frac{\text{Vol. of water}}{\text{Vol. of Voids}} \times 100 = \frac{V_w}{V_v} \times 100$$

for dry Soil

$$S = 0\%$$

for Saturated Condⁿ

$$S = 100\%$$

for Partially Saturated

$$0 < S < 100\%$$

$$a_c = 0\%$$

$$0 < a_c < 100\%$$

NOTE : $S + a_c = 1$

⑤ Air Content (a_c)

$$a_c = \frac{\text{Vol. of air}}{\text{Vol. of void}} \times 100 = \frac{V_a}{V_v} \times 100$$

$$a_c = 100\%$$

$$a_c = 0\%$$

$$0 < a_c < 100\%$$

$$\eta_a = \frac{\text{Volume of air}}{\text{Total vol. of Soil mass}} \times 100 = \frac{V_a}{V_T} \times 100$$

Range of η_a :- $0 \leq \eta_a < 100\%$

NOTE :- Relation in between η_a & a_c .

$$\eta_a = \frac{V_a}{V_T} = \frac{V_a}{V_T} * \frac{V_w}{V_w}$$

$$\eta_a = \left(\frac{V_w}{V_T} \right) * \left(\frac{V_a}{V_w} \right) \rightarrow a_c$$

$$\eta_a = n \cdot a_c$$

$$\text{Percentage of Voids} = n = \text{Porosity}$$

⑦ Unit Weight (γ) / Density (δ)

A) Bulk / Total Unit Wt. ($\gamma_b / \gamma_t / \gamma$)
 or [Bulk density ($\delta_b / \delta_t / \delta$)]

$$\gamma_b / \gamma_t / \gamma = \frac{\text{Total Wt. in existing Condition}}{\text{Total Volume of Soil}}$$

$$\gamma_b / \gamma_t / \gamma = \frac{W_{\text{TOTAL}}}{V_{\text{TOTAL}}} \quad \text{N/m}^3, \text{ kN/m}^3$$

$$\delta_b / \delta_t / \delta = \frac{M_{\text{TOTAL}}}{V_{\text{TOTAL}}} \quad \text{gm/cc, kg/m}^3$$

→ Mass → gm, kg

$$\text{Density } (\delta) = \frac{\text{Mass}}{\text{Volume}} \quad \downarrow \quad \text{gm/cc, kg/m}^3$$

* $\gamma_w = 1 \text{ gm/cc, } 1000 \text{ kg/m}^3$

→ Weight ($W = mg$) → N, KN

$$\text{Unit wt. } (\gamma) = \frac{\text{Weight}}{\text{Volume}} \quad \downarrow \quad \frac{N}{m^3}, \frac{KN}{m^3}$$

* $\gamma_w = 9810 \frac{N}{m^3}, 9.81 \text{ KN/m}^3$

⑧ Saturated Unit Weight (γ_{sat}) or Saturated Density (δ_{sat})

$$\gamma_{\text{sat}} = \frac{\text{Total Wt. in Saturated Condition}}{\text{Total Volume of Soil}}$$

$$\gamma_{\text{sat}} = \frac{W_{\text{sat}}}{V_{\text{TOTAL}}}$$

$$\delta_{\text{sat}} = \frac{M_{\text{sat}}}{V_{\text{TOTAL}}}$$

⑨ Dry Unit Weight (γ_d) or Dry Density (δ_d)

$$\gamma_d = \frac{\text{Total Wt. in dry Condition}}{\text{Total Volume of Soil}} = \frac{W_{\text{dry}}}{V_T}$$

$$\gamma_d = \frac{W_d}{V_T} \quad \text{N/m}^3, \text{ kN/m}^3$$

$$\delta_d = \frac{M_{\text{dry}}}{V_T} = \frac{M_d}{V_T} \quad \text{gm/cc, kg/m}^3$$