B HEAT TRANSFER IN THE SIR

Basic Concepts

<u>Difference b/w Thermodynamics & Heat transfer</u>

$$1000^{\circ}C \longrightarrow 25^{\circ}C$$
 $M = 1000 \text{ Kg}$, $C = 450 \text{ J/kg-K}$

Heat transfer $20^{\circ}C$
 $Q = mc \Delta T_{1-2}$
 $Q = mc (T_2-T_1)$
 $Q = 1000 \times 450 \times (25-1000)$
 $Q = -438750 \text{ kJ}$ Rejected/Lost

Rate of Heat transfer/ Heat transfer rate/ Heat Flow rate


```
* Thenmodynamics Subject

Heat transfer (タ) → Jork J

Heat transfer Subject

Rate of heat transfer (タ) — WorkW
```

- Whenever two systems at different temperature brought into contact, heat transfer takes place.
- Thermodynamics subject deals with the amount of heat transfer from one equilibrium state to another equilibrium state.
- Units of heat transfer used in thermodynamics are Joule (or) Kilojoule.

Heat transfer subject deals with,

- Rate of heat transfer or heat flow rate
- Mode of heat transfer (conduction, convection, thermal radiation).
- Temperature after certain length of time before the equilibrium is achieved.
- Temperature distribution within the body.
- The units of heat flow rate used in heat transfer subject are Watt (or)
 Kilowatt.

<u>Practical applications of heat transfer related to</u> <u>Mechanical engineering</u>

<u>Practical applications of heat transfer related to</u> <u>Mechanical engineering</u>

- Calculation of thickness of insulation, for the pipes carrying steam from steam generator to steam turbine.
- Designing of condenser.
- Designing of furnaces used for heat treatment processes such as annealing, normalizing and tempering etc.
- Designing of cooling fan, for various transistors mounted over electronic chip.

Content

