

Engineers Hub

For GATE, ESE & PSUs

SYLLABUS

Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, design of jigs and fixtures.

Metrology and inspection: Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools.

Analysis of Previous GATE Papers

Exam Year	Organized by	1 Mark Ques.	2 Marks Ques.	Total Marks
2009	IIT - ROORKEE	3	14	31
2010	IIT - GUWAHATI	6	7	20
2011	IIT-MADRAS	6	12	30
2012	IIT - DELHI	5	8	21
2013	IIT - BOMBAY	7	9	25
2014 Set-1	IIT-KHARAGPUR	6	2	10
2014 Set-2	IIT-KHARAGPUR	6	3	12
2014 Set-3	IIT-KHARAGPUR	6	4	14
2014 Set-4	IIT-KHARAGPUR	6	4	14
2015 Set-1	IIT – KANPUR	5	6	17
2015 Set-2	IIT - KANPUR	3	6	15
2015 Set-3	IIT – KANPUR	5	6	17
2016 Set-1	IISc - BANGALORE	6	5	16
2016 Set-2	IISc - BANGALORE	4	5	14
2016 Set-3	IISc – BANGALORE	5	7	19
2017 Set-1	IIT – ROORKEE	3	6	15
2017 Set-2	IIT - ROORKEE	3	4	11
2018 Set-1	IIT – GUWAHATI	7	6	19
2018 Set-2	IIT-GUWAHATI	6	7	20
2019 Set-1	IIT-MADRAS	3	6	15
2019 Set-2	IIT-MADRAS	4	5	14

CONTENTS

S. No.	NAME OF THE CHAPTER	PAGE No.
1.	ENGINEERING MATERIALS	1 – 5
2.	METAL CASTING	6 – 28
3.	METAL FORMING & SHEET METAL OPERATION	29 – 62
4.	JOINING/WELDING	63 – 83
5.	MACHINING AND MACHINE TOOL OPERATION	84 — 135
6.	METROLOGY AND INSPECTION	136 – 146
7.	CIMS	147 – 160
8.	NONCONVENTIONAL MACHINING (EDM, HIGH ENERGY RATE FORMING)	161 – 177
	SOLUTIONS	178 - 228

Engineers Hub
For GATE, ESE & PSUs

ENGINEERING MATERIALS

- 1. When 1.0 % plain carbon steel is showly cooled from the molten state to 740 °C, the resulting structure will contain
 - A. Pearlite and Cementite
 - B. Ferrite and Cementite
 - C. Austinite and Ferrite
 - D. Austenite and Cementite

[GATE-ME-90:1M]

- 2. The iron carbon diagram and the TTT curves are determined under
 - A. Equilibrium and non-equilibrium conditions respectively.
 - B. Non-equilibrium and equilibrium conditions respectively
 - C. Equilibrium conditions for both
 - D. Non-equilibrium conditions for both

[GATE-ME-96:1M]

- 3. During heat treatment of steel, the hardness of various structures in increasing order is
 - A. martensite, fine pearlite, coarse pearlite, spherodite
 - B. fine pearlite, martensite, spherodite, coarse pearlite
 - C. Martensite, coarse pearlite, fine pearlite, spherodite
 - D. spherodite, coarse pearlite, fine pearlite, martensite

[GATE-ME-03:1M]

- 4. Cold working of steel is defined as working
 - A. At its recrystallisation temperature
 - B. Above its recrystallisation temperature
 - C. Below its recrystallisation temperature
 - D. At two thirds of the melting temperature of the metal

[GATE-ME-03:1M]

- 5. Hardness of steel greatly improves with
 - A. annealing B. cyaniding
 - C. normalizing D. tempering

[GATE-ME-03:2M]

- 6. The percentage of carbon in grey cast iron is in the range of
 - A. 0.25 to 0.75 percent
 - B. 1.25 to 1.75 percent
 - C. 3 to 4 percent
 - D. 8 to 10 percent

[GATE-ME-04:1M]

7. From the lists given below, choose the most appropriate set of heat treatment process and the corresponding process characteristics

Process

- P. Tempering
- Q. Austempering
- R. Martmpering

Characteristics

- 1. Austenite is converted into bainite
- 2. Austenite is converted into martensite
- 3. Cementite is converted into globular structure
- 4. Both hardness and brittleness are reduced
- 5. Carbon is absorbed into the metal
- A. P-3, Q-1, R-5

B. P-4, Q-3, R-2

C. P-4, Q-1, R-2

D. P-1, Q-5, R-4

[GATE-ME-04:2M]

- 8. When the temperature of a solid metal increases
 - A. strength of the metal decreases but ductility increases

- B. both strength and ductility of the metal decreases
- C. both strength and ductility of the metal increases
- D. strength of the metal increases but ductility decreases

[GATE-ME-05:1M]

- 9. The main purpose of spheroidising treatment is to improve
 - A. hardenability of low carbon steels
 - B. machinability of low carbon steels
 - C. hardenability of high carbon steels
 - D. machinability of high carbon steels

[GATE-ME-06:1M]

10. The ultimate tensile strength of a material is 400 MPa and the elongation up to maximum load is 35 %. If the material obeys power law of hardening, then the true stress-true strain relation (stress in MPa) in the plastic deformation range is

A.
$$\sigma = 540e^{0.30}$$

B.
$$\sigma = 775 \, \epsilon^{0.30}$$

C.
$$\sigma = 540 \, \epsilon^{0.35}$$

D.
$$\sigma = 775 \, \epsilon^{0.35}$$

[GATE-ME-06:2M]

11. Match the items in columns I and II

Column-I

- P. Charpy
- Q. Knoop
- R. Spiral Test
- S. Cupping Test

Column-II

- 1. Fluidity
- 2. Microhardness
- 3. Formability
- 4. Toughness
- **5.** Permeability

- A. P-4, Q-5, R-3, S-2
- B. P-3, Q-5, R-1, S-4
- C. P-2, Q-4, R-3, S-5
- D. P-4, Q-2, R-1, S-3

[GATE-ME-06:2M]

- 12. If a particular Fe-C alloy contains less than0.83 % carbon, it is called
 - A. high speed steel
 - B. hypoeutectoid steel
 - C. hypereutectoid steel
 - D. cast iron

[GATE-ME-07:1M]

- 13. The effective number of lattice points in the unit cell of simple cubic, body centered cubic, and face centered cubic space lattices, respectively,
 - A. 1, 2, 2
- B. 1, 2, 4
- C. 2, 3, 4
- D. 2, 4, 4

[GATE-ME-09:1M]

- 14. Which of the following is the correct data structure for solid models?
 - A. Solid part→face→edges→vertices
 - B. solid part→edges→faces→vertices
 - C. vertices→edges→faces→solid parts
 - D. vertices→faces→edges→solid parts

[GATE-ME-09:1M]

- 15. The material property which depends only on the basic crystal structure is
 - A. fatigue strength
 - B. work hardening
 - C. fracture strength
 - D. elastic constant

[GATE-ME-10:1M]

- 16. The crystal structure of austenite is
 - A. body centered cubic
 - B. face centered cubic
 - C. hexagonal closed packed